M7116 interaktivně
Histogramy
Tady je nějaký text, viz (1).
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Nunc ac dignissim magna. Vestibulum vitae egestas elit. Proin feugiat leo quis ante condimentum, eu ornare mauris feugiat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris cursus laoreet ex, dignissim bibendum est posuere iaculis. Suspendisse et maximus elit. In fringilla gravida ornare. Aenean id lectus pulvinar, sagittis felis nec, rutrum risus. Nam vel neque eu arcu blandit fringilla et in quam. Aliquam luctus est sit amet vestibulum eleifend. Phasellus elementum sagittis molestie. Proin tempor lorem arcu, at condimentum purus volutpat eu. Fusce et pellentesque ligula. Pellentesque id tellus at erat luctus fringilla. Suspendisse potenti.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
\[ x^2 + \int x \tag{1}\]
Tady
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Nunc ac dignissim magna. Vestibulum vitae egestas elit. Proin feugiat leo quis ante condimentum, eu ornare mauris feugiat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris cursus laoreet ex, dignissim bibendum est posuere iaculis. Suspendisse et maximus elit. In fringilla gravida ornare. Aenean id lectus pulvinar, sagittis felis nec, rutrum risus. Nam vel neque eu arcu blandit fringilla et in quam. Aliquam luctus est sit amet vestibulum eleifend. Phasellus elementum sagittis molestie. Proin tempor lorem arcu, at condimentum purus volutpat eu. Fusce et pellentesque ligula. Pellentesque id tellus at erat luctus fringilla. Suspendisse potenti.
Caswell two stage model
Mathematical background
The matrix population model
\[ n(t + 1) = A n(t) \]
is essentially a vector linear recurrence relation, or a system of linear autonomous difference equations.. An analytical solution is given by
\[ n(t) = A^t n(0), \]
where \(n(0)\) is the vector of initial conditions. Rewriting this using the Jordan canonical form yields
\[ n(t) = W J^t W^{-1} n(0). \]
From Perron–Frobenius theory, we can derive the asymptotic behavior for certain matrices.
See Caswell (1989, 57)
Primitive Matrices
A primitive matrix \(A\) has a positive eigenvalue \(\lambda_1\) that is strictly greater in modulus than any other eigenvalue. This \(\lambda_1\) is called the dominant eigenvalue of \(A\). The associated right eigenvector \(w_1\) is positive is referred to as dominant. Similarly, \(v_1\) is the positive left eigenvector associated with \(\lambda_1\).
We can write:
\[ n(t) = \begin{pmatrix} w_1 & \widetilde{W} \end{pmatrix} \begin{pmatrix} \lambda_1^t & \mathbf{0}^T \\ \mathbf{0} & \widetilde{J}^t \end{pmatrix} \begin{pmatrix} v_1^T \\ \widetilde{V} \end{pmatrix} n(0) = \lambda_1^t w_1 v_1^T n(0) + \widetilde{W} \widetilde{J}^t \widetilde{V} n(0). \]
For large \(t\), we have:
\[ n(t) \sim c \lambda_1^t w_1, \]
where \(c = v_1^T n(0) > 0\).
The total population size at time \(t\) is given by the 1-norm of the population vector:
\[ N(t) = \| n(t) \|_1 = \sum_{i=1}^k n_i(t) \sim \lambda_1^t c \| w_1 \|_1. \]
Regardless of the initial population structure \(n(0)\), the population size behaves asymptotically like a geometric sequence with ratio \(\lambda_1\), and the population composition is proportional to the components of the eigenvector \(w_1\).
See Caswell (1989, 61)
Imprimitive and Irreducible Matrices
In this case, the matrix \(A\) has eigenvalues:
\[ \lambda_j = \lambda_1 e^{\frac{2(j-1)}{d} \pi i}, \quad j = 1, 2, \dots, d, \]
where \(d\) is the index of imprimitivity of the matrix \(A\), and \(\lambda_1\) is a positive real number. Other eigenvalues satisfy \(\lambda_1 > |\lambda|\).
We derive:
\[ n(t) = \lambda_1^t \sum_{j=1}^d c_j e^{\frac{2(j-1)}{d} t \pi i} w_j + \widetilde{W} \widetilde{J}^t \widetilde{V} n(0), \]
where \(c_j = v_j^T n(0)\). Thus, the solution of the projection equation with an irreducible and imprimitive matrix \(A\) is asymptotically equivalent to the vector sequence: \[ n(t) \sim \lambda_1^t \sum_{j=1}^d c_j e^{\frac{2(j-1)}{d} t \pi i} w_j. \]
Defining
\[ s(t) = \sum_{j=1}^d c_j e^{\frac{2(j-1)}{d} t \pi i} w_j, \]
yields:
\[ n(t) \sim \lambda_1^t s(t). \]
Also,
\[ s(t + d) = s(t), \quad \frac{1}{d} \sum_{l=0}^{d-1} s(t + l) = \frac{c_1}{d} w_1. \]
This result implies that the solution behaves like a geometric sequence with ratio \(\lambda_1\), modulated by a \(d\)-periodic structure.
If all eigenvectors \(w_j\) are normalized, the total population size satisfies:
\[ N(t) \sim \lambda_1^t \left\| \sum_{j=1}^d c_j e^{\frac{2(j-1)}{d} t \pi i} w_j \right\|_1. \]
See Caswell (1989, 63)
Damping ratio
Let \(\mu\) be the largest modulus of the eigenvalues of the \(k \times k\) matrix \(A\) that are smaller than \(\lambda_1\); in the case \(d = k\), where \(d\) is the imprimitivity index, we define \(\mu = 0\).
Then the damping ratio is defined as:
\[ \rho = \frac{\lambda_1}{\mu}, \]
and for \(\mu = 0\) we set \(\rho = \infty\).
The damping ratio expresses the rate of convergence to the stabilized structure. See Caswell (1989, 69)
Sensitivity of the growth rate
The sensitivity of the characteristic \(\chi = \chi(A)\) to the component \(a_{ij}\) of the projection matrix \(A\) is defined as
\[ \frac{\partial \chi}{\partial a_{ij}}. \]
In particular, for the growth rate \(\lambda_1\), we have
\[ \frac{\partial \lambda_1}{\partial a_{ij}} = \frac{v_i w_j}{v^T w}. \]
The sensitivity matrix \(S\) is then defined by
\[ S = (s_{ij}) = \left( \frac{\partial \lambda_1}{\partial a_{ij}} \right) = \left( \frac{v_i w_j}{v^T w} \right) = \frac{1}{v^T w} v w^T. \]
See Caswell (1989, 118)
Elasticity of the growth rate
The elasticity of the characteristic \(\chi = \chi(A)\) with respect to the component \(a_{ij}\) of the projection matrix \(A\) is defined as
\[ \frac{a_{ij}}{\chi} \cdot \frac{\partial \chi}{\partial a_{ij}} = \frac{\partial \ln \chi}{\partial \ln a_{ij}}. \]
In particular, the elasticity \(e_{ij}\) of the growth rate \(\lambda_1\) with respect to the entry \(a_{ij}\) is
\[ e_{ij} = \frac{1}{\lambda_1 v^T w} a_{ij} v_i w_j. \]
The elasticity matrix is given by
\[ E = (e_{ij}) = \frac{1}{\lambda_1 v^T w} A \circ (v w^T), \]
where \(\circ\) denotes the Hadamard (element-wise) product of matrices.
See Caswell (1989, 132)
Long-term behavior of eigenvalues for Caswell’s \(2 \times 2\) matrix model
The long-term behavior of the population vector \(n(t)\), given by the equation
\[ n(t) = A^t n(0), \]
depends on the eigenvalues \(\lambda_i\) of the projection matrix \(A\), as they are raised to higher and higher powers. For this particular model, we have two real eigenvalues. In this situation, we can in some way analyze the behavior of this system given by matrix \(A\) using all of its eigenvalues.
(In more general cases, the contribution of all the smaller eigenvalues to the behavior tends to be less relevant, and the deciding factors are the dominant eigenvalue and whether the matrix is primitive or not, and at least irreducible.)
If \(\lambda_i \in \mathbb{R}\), then:
- If \(\lambda_1 > 1\): the population grows exponentially.
- If \(\lambda_1 = 1\): the population stabilizes over time.
- If \(0 < \lambda_2 < 1\): the rate of convergence to the stable structure increases as \(\lambda_2\) tends to zero.
- If \(\lambda_2 = 0\): the population stabilizes after just one step.
- If \(-1 < \lambda_2 < 0\): the population stabilizes with damped oscillations.
- If \(\lambda_2 = -1\): the ratio of the components of the solution \(n(t)\) changes periodically, with a period of 2.
- If \(0 < \lambda_1 < 1\): the population decays exponentially.
Caswell two stage model
Here is the table for the reader to try some of the aforementioned situations. The first four matrices are primitive, and the last two are imprimitive and irreducible. For all examples, the fertility \(\varphi = 1\) and the initial conditions vector is \(n(0) = (1, 0)^T\).
\(\sigma_1\) | \(\sigma_2\) | \(\gamma\) | Matrix \(A\) | \(\lambda_1\) | \(\lambda_2\) | Behavior of population \(||n(t)||_1\) | Damping ratio |
---|---|---|---|---|---|---|---|
\(1\) | \(1\) | \(1\) | \(\pmatrix{0 & 1 \\ 1 & 1}\) | \(\frac {1 + \sqrt{5}} 2\) | \(\frac{1 - \sqrt{5}} 2\) | \(\lambda_1 > 1\) : population grows exponentially | \(\frac{\sqrt{5} - 1} 2\) |
\(\frac 2 3\) | \(\frac 2 3\) | \(1\) | \(\pmatrix{\frac 1 3 & 1 \\ \frac 2 3 & 1}\) | \(1\) | \(\frac 1 3\) | \(\lambda_1 = 1\), \(0 < \lambda_2 < 1\): population stabilizes over time | \(3\) |
\(\frac 2 3\) | \(\frac 1 3\) | \(\frac 1 2\) | \(\pmatrix{\frac 1 2 & 1 \\ \frac 1 2 & 1}\) | \(1\) | \(0\) | \(\lambda_1 = 1\), \(\lambda_2 = 0\): population stabilizes after one step | \(\infty\) |
\(\frac 5 9\) | \(1\) | \(1\) | \(\pmatrix{0 & 1 \\ \frac 5 9 & 1}\) | \(1\) | \(-\frac 5 9\) | \(\lambda_1 = 1\), \(\lambda_2 < 0\): population stabilizes, but exhibits damped oscillations | \(\frac 9 5\) |
\(1\) | \(0\) | \(1\) | \(\pmatrix{0 & 1 \\ 1 & 0}\) | \(1\) | \(-1\) | \(\lambda_1 = 1\), \(\lambda_2 = -1\): population is stable, but its structure oscillates with period \(2\) | \(\infty\) |
\(\frac 2 3\) | \(0\) | \(1\) | \(\pmatrix{0 & 1 \\ \frac 2 3 & 0}\) | \(\frac {\sqrt 2} 3\) | \(-\frac {\sqrt 2} 3\) | \(|\lambda_1| < 1\), \(\lambda_2 = \overline{\lambda_1}\): population decreases, but its structure oscillates with period \(2\) | \(\infty\) |
Bibliography